当前位置:首页 > Papers > 底膠材料於IC封裝熟化過程中黏彈性質之模型建構

底膠材料於IC封裝熟化過程中黏彈性質之模型建構

論文名稱(中) 底膠材料於IC封裝熟化過程中黏彈性質之模型建構
論文名稱(英) Modeling the Visco-Elastic Properties of Underfill Materials during Curing in IC Packaging
頁數 52
摘要(中)   IC封裝的注膠封裝過程中,underfill在晶片 (chip)與基板 (substrate)之間逐漸凝固成形,而材料彼此間的熱膨脹係數 (coefficient of thermal expansion)差異、underfill未熟化完全、以及材料在熟化過程產生的收縮 (shrinkage)情形等等諸多因素的影響之下,成品會有翹曲變形 (warpage)的現象發生,又由於溫度的反覆升降造成材料的持續變形,進而產生潛變 (creep),降低其壽命。
本論文主要探討underfill的黏彈性質,利用DMA及DSC等儀器觀測其機械性質以建立數學模型用以預測使用長時間下的模數,來評估因為應力鬆弛 (stress relaxation)而產生影響的疲勞壽命。
其中熟化度 (degree of cure)亦為相當重要之參數,溫度的高低及持續的時間皆會影響材料分子間的交聯程度,而分子間交連的程度將大大影響著材料的性質,因此本論文除了建構underfill的Maxwell Model之外,另外加入了熟化度的參數,來達到更準確描述underfill在製程中的實際情況,也能預測在各種時間及溫度下的真實模數。
摘要(英)   Underfill is an alternative material for redistributing the stress induced by different coefficient thermal expansion (CTE) between materials in IC packaging. It is important to consider its viscoelastic behavior because the underfill material is polymer-based and its mechanical properties are influenced by both temperature and time.
In this study, material properties was investigated by dynamic mechanical analysis (DMA) with different frequency and temperature. According to the time-temperature superposition (TTS), the shift factors were determined by Williams-Landel-Ferry (WLF) equation. It is used to construct the master curve for both storage (E’) and loss (E’’) moduli as a function of frequency at different reference temperature.
In addition, degree of cure (DOC) also played an important role in IC packaging. Modulus would be strongly affected with DOC. It is investigated the relation between temperature, curing time and conversion, and then a curing kinetic model from the differential scanning calorimeter (DSC) experiment was built. Based on the master cure and curing kinetic model, the model was constructed and had capability to predict the relaxation modulus more precisely.
論文目次 目錄………………………………VI
第一章、緒論……………………….1
1-1 前言…………………………..1
1-2 底膠材料簡介……………………2
1-3 無流動底膠……………………..4
1-4 文獻回顧……………………….5
第二章、理論基礎……………………9
2-1 線性黏彈模型……………………9
2-2 麥克斯偉模型……………………10
2-3 廣義麥克斯偉模型………………..11
2-4 重疊原理………………..12
2-5 波茲曼重疊原理………………….12
2-6 時間-溫度疊加原理……………….14
2-7 WLF方程式………………………15
2-8 熱固性反應熟化動力模型…………..17
2-9 動態機械分析原理………………..19
2-9-1 振幅……………………..21
2-9-2 阻尼相……………………22
2-9-3 相角差…………….23
第三章、儀器設備與實驗方法…………..24
3-1 實驗目的……………………….24
3-2 實驗流程……………………….24
3-3 試片的選用……………………..25
3-4 試片的製作……………………..28
3-5 underfill材料與試片的貯存設備…….28
3-6 夾具的選用……………………..28
3-7 DSC熱分析儀…………………….29
3-8 熟化度與時間及溫度的關係…………30
3-9 DMA動態機械分析儀……………….33
3-10 DMA測試之實驗參數………………34
第四章、實驗結果……………………35
4-1 各熟化度鬆弛模數主區線之建立……..35
4-2 儲存模數與鬆弛模數的轉換…………37
4-3 underfill之熱機械性質數學模型建立…39
第五章、綜合討論與未來發展…………..44
5-1 綜合討論………………..44
5-2 未來發展………………..44
參考文獻…………………………..46
參考文獻 [1] 林勇志, CSP封裝產品在循環熱應力作用下之可靠度分析, 成功大學機械系碩士畢業論文 (1999).
[2] M.Amagai and M.Nakao “Ball Grid Array(BGA)Packages with the Copper Core Solder Ball,”IEEE Elec.Comp.Tech.Conf. 48th, pp692-701 (1998).
[3] ANSYS Menu,”Rate-Dependent Plasticity,”ANSYS Theory Referance, Reversion5.5, pp.4-25-27
[4 ] Anand, L., “Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperature”, Transaction of the ASME, Vol 104, pp.12-17 (1982).
[5] Zhuqing Zhang, C.P. Wong,”Recent Advances in Flip-Chip Underfill: Materials, Process, and Reality,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGY, Vol. 27, No.3, pp.515-524 (2004).
[6] Zhuqing Zhang, Jicun Lu, and C.P. Wong,”Double-layer No-Flow Underfill Process for Flip-Chip Applications,” IEEE TRANSACTIONS ON ADANCED PACKING, Vol. 26, No.1, pp.239-244 (2003).
[7] Slawomir Rubinsztajn, Donald Buckley, John Campbell, David Esler, Eric Fiveland, Ananth Prabhakumar, Donna Sherman and Sandeep Tonapi, “Development of Novel Filler Technology for No-Flow and Wafer Level Underfill Materials,”
Journal of Electronic Packaging, Vol.127, pp.77-85 (2005).
[8] Tu P.L., Y.C. Chan and K.C. Hung, ”Reliability of microBGA Assembly Using No-Flow Underfill,” Microelectronics Reliablity, Vol.41, pp.1993-2000 (2001).
[9] Timmala, Fundamentals of Microsystems Packaging, McGrawHill (2002).
[10]        L. J. Ernst, C. van’t Hot, D. G. Yang, M. S. Kiasat, G. Q. Zhang, H. J. L. Bressers, J. F. J. Caers, A. W. J. den Boer, J. Janssen, “Mechanical Modeling and Characterization of the Curing Process of Underfill Materials, ” Journal of Electronic Packaging, Vol. 124, pp97-105, (2002).
[11] D.G. Yang, K.M.B. Jansen, L.J. Ernst, G.Q. Zhang, W.D. van Driel, H.J.L. Bressers, X.J. Fan, “Prediction of Process-Induced Warpage of IC Packages Encapsulated with Thermosetting Polymers,” Electronic Components and Technology Conference, pp98-105 (2004).
[12] K.M.B. Jansen, L. Wang, D.G. Yang, C. van’t Hof, L.J. Ernst, H.J.L. Bressers and G.Q. Zhang “Constitutive Modeling of Moulding Compounds,” Electronic Components and Technology Conference, pp890-894 (2004).
[13] Yang Rao, S.H. Shi, and C.P. Wong, “An Improved Methodology for Determining Temperature Dependent Moduli of Underfill Encapsulants,” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGY, Vol. 23, No.3 (2000).
[14]        Zhuqing Zhang, Lianhua Fan, Suresh K. Sitaraman, and C.P. Wong, “Four-Laser Bending Beam Measurements and FEM Modeling of Underfill Induced Wafer Warpage,” Electronic Components and Technology Conference, pp.747-753 (2004).
[15] Xingsheng Liu, Shuangyan Xu, G.Q. Lu, David A. Dillard, “Stacked Solder Bumping Technology for Improved Solder Joint Reliability,”Microelectronics Reliability, Vol.41, pp.1979-1992 (2001).
[16] Ju T.H., Wei Lin, Y.C. Lee and Jay J. Liu, “Effects of Ceramic Ball-Grid-Array Packages Manufacturing Variations on Solder Joint Reliability,” Journal of Electronic Packaging, Vol.116, pp.242-248 (1994).
[17] Chan Y. C., M. O. Alam, K. C. Hung, H. Lu and C. Bailey, “Effect of Underfill Entrapment on the Reliability of Flip-Chip Solder Joint,” Journal of Electronic Packaging, Vol.126, pp.541-545 (2004).
[18] Tu P.L., Y. C. Chan, K. C. Hung and J. K. L. Lai, “Comparative Study of Micro-BGA Reliability Under Bending Stress,” IEEE Transactions on Advanced Packaging, Vol. 23, No. 4, pp.750-756 (2000).
[19] McCrum, N. G., C. P. Buckley and C. B. Bucknall, Principles of Polymer Engineering, Oxford Science Publications (1991).
[20] Haddcad, Y. M., Viscoelastic of Engineering Materials, Chapman&Hall (1995).
[21] Ward, I. M. and D. W. Hadley, An Introduction to the Mchanical Properties of Solid Polymers, Wiley (1993).
[22] 胡德, 高分子物理與機械性質(上)(下) (1994).
[23] Kim, Yeong K. and Scott R. White, “Process-Induced Stress Relaxation Analysis of AS4/3501-6 Laminate,” Journal of Reinforced Plastics and Composites, Vol. 16, No. 1 pp.2-15 (1997).
[24] Yi He, “Thermomechanical and Viscoelastic Behavior of a No-Flow Underfill Material for Flip-Chip Applications,” Thermochimica Acta, Vol. 439, pp.127-134 (2005).
[25] 蘇銘勝, 電子構裝材料在注模後烘烤中熱機械性質與數學模式之研究, 國立成功大學工程科學研究所碩士論文 (2003).
[26] 郭建志, IC封裝後熟化製程材料參數數學模型之建立, 國立成功大學機械工程研究所碩士論文 (2004).
[27] Kazuhiko Ninomiya and John D. Ferry, “some approximate equations useful in the phenomenological treatment of linear viscoelastic data, Journal of Colloid Science, Vol. 14, pp.36-48 (1958).
[28] K.P. Menard, Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, Boca Raton(1999).
關鍵字(中) 潛變應力鬆弛熱膨脹係數黏彈性質
關鍵字(英) underfillDMATTSrelaxation modulusWLFstorage modulus

点击附件下载查看全文:

  底膠材料於IC封裝熟化過程中黏彈性質之模型建構 (1.1 MB, 1 次)
您没有权限下载此文件。

发表评论: